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A B S T R A C T S

The objective of this paper is to present a method for estimating seasonally specific ambient population counts.
The central assumption is that the variation in observed night-lights is a valid proxy for ambient population.
Island populations are used for validation, where it is possible to derive estimates of ambient population from
national statistics. The method is then applied to the whole of Greece. The validation shows a strong correlation
amongst night-lights derived estimates and the reference dataset. Based on the proposed method, national maps
are produced showing the month when seasonality is in its peak, the peak value during that month and the
overall length of the season, in terms of how many months exceed a certain threshold. Different seasonality
patterns are revealed. An advantage of the proposed method, compared to other contemporary approaches, is
that it is based on public domain, global data.

1. Introduction

Population counts and estimates are normally available from cen-
suses and registers. Census residential population is counts of people at
their permanent residencies (a.k.a. “night-time” population). Ambient
population, as opposed to residential population, is the total population
present at each particular location at a given time (Amaral, Camara,
Miguel Vieira Monteiro, Alberto Quintanilha, & Elvidge, 2005; Sutton,
Elvidge, & Obremski, 2003). The main benefit of ambient population is
that it can be used to track the movement of people within the day (a.k.a
“day-time” population). Ambient population shows for example the
concentration of people in shopping centers during the day and in sta-
diums during the weekends, both void of resident population. Censuses
are typically performed once per decade. But people spend time in places
other than their residence, generating a demographic concept known as
the seasonal population. People move in space for multiple reasons, in-
cluding commuting to work and taking holidays. Depending of the length
of stay, different seasonal population groups are formed, with quite
distinct characteristics. A first group refers to tourists traveling to places
with some kind of touristic interest. Tourists that only make short stays
are also known as visitors. A second group includes seasonal workers
attached to seasonal jobs (in tourism, agriculture, construction etc.).
Third is the group that includes second-house owners. They are typically
expected to spend more days than tourists at their second-house location.
Fourth, migrants, registered or unregistered, that move in space for
several reasons including refugees escaping conflicts as well as people
moving due to socioeconomic factors.

Seasonal population, typically exhibits a peak time at each place.
Seasonality peak-time depends on what is actually attracting the ad-
ditional, non-resident, people. For tourists it can be summer holidays, in
coastal areas, or winter holidays, in mountainous regions. It may be
religious events triggering the movement of people throughout the year
(Roman & Stokes, 2015). In any case, time-specific population dis-
tributions within a year are hard to estimate by conventional means.
Custom surveys are inevitably limited in scope and costly, rendering
repetition infrequent. Proxy variables such as water and electricity
consumption can also be used to estimate seasonal population. The
reliability of this approach is however reduced by the fact that (i)
consumption data are available at two or three month intervals (ii)
billing is sometimes based on estimated rather than actual consump-
tion, for long periods of time before an actual measurement is made (iii)
ephemeral events are present in the data (measurement errors, leaks
etc.) (iv) per capita consumption of water and electricity is not constant
throughout the year, consumption patterns change during the summer
due to swimming pools, increased irrigation needs, excessive use of air
conditioning etc.

Occupancy of tourist accommodation establishments is also fre-
quently used as a metric for estimating the additional present popula-
tion. The recorded data include percentage of beds occupied in the
establishments. However, this data is affected by the shadow economy
(illegally operating establishments) and by tax evasion (legally oper-
ating establishments not declaring all stays). Recently, occupancy data
are becoming even more unreliable due to the rapid takeover of dis-
ruptive technologies such as the AirBnB platform (Airbnb, 2017) which
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currently escapes national statistics. It has been suggested that Airbnb
already provides a viable alternative for certain traditional types of
overnight accommodation (Zervas, Proserpio, & Byers, 2016).

The phenology of population and the ability to capture and antici-
pate its dynamics has crucial implications in several domains. For ex-
ample, seasonal population is useful in risk management in order to
better estimate population at risk at each time (Smith et al., 2015). It is
also important for improving energy demand forecasting (Roman &
Stokes, 2015) and in epidemiology to monitor disease outbreaks (Bharti
et al., 2011). In planning, both the amount and the type of seasonal
population is essential because it substantially alters the demand for
services. The demographic and socioeconomic profile of residents vs.
the several non-residential groups is typically very different. Imposing a
different strain on services and infrastructure.

Seasonal population is also one of the primary factors in de-
termining the carrying capacity of a particular place. Carrying capacity
is defined as the point where a place becomes insufficient to meet,
without degradation, the needs of both resident and seasonal popula-
tion due to natural or anthropogenic (infrastructure) constrains
(Coccossis & Parpairis, 2000). Respecting the capacity of the local
system is important both in the context of sustainable development and
for maintaining the attraction and competitiveness of touristic desti-
nations (Coccossis & Mexa, 2004).

Recent efforts to estimate seasonal population have mainly focused
on mobile phone-call records (Deville et al., 2014, Erbach-Schoenberg,
Alegana, Sorichetta, Lianard, et al., 2016, Hanaoka, 2016, Ratti,
Frenchman, Pulselli, & Williams, 2006, Reades, Calabrese, & Ratti,
2009, Wesolowski et al., 2015, Wilson, Erbach-Schoenberg, Albert,
Power, et al., 2016, Yang, Fang, & Xu, 2016). Essentially, phone-call
records are treated as big-data. While this dataset provides powerful
insights in population movements, it is limited by the fact that phone
call data are not public domain. Therefore usage is restricted to those
having access to the data. Roman and Stokes (2015) recently exploited
a different data source, daily satellite night-light images, revealing
seasonal movement at fine intervals of space and time. However, the
night-light averages used for periods of less than a month are currently
also not public domain.

In general, the strong correlation of night-lights with population has
been proven in numerous studies. Elvidge, Hsu, Baugh, & Gosh, 2014
observed a strong correlation between night-lights and population in
most countries of the globe. Stathakis (2016) noted a very strong cor-
relation between night-lights and resident population for Greece in
specific. Amaral et al. (2005) noted a strong correlation between night-
lights and urban population in Brazil. Other than demography, previous
studies used night-lights in numerous domains such as to assess the
economic performance of areas (Ma, Zhou, Pei, Haynie, & Fan, 2012;
Triantakonstantis & Stathakis, 2014, chap. 18; Stathakis, Tselios, &
Faraslis, 2015), urbanization (Stathakis, 2015; Zhang & Seto, 2011;
Zhang & Seto, 2013) health-related topics (Kloog, Haim, Stevens, &
Portnov, 2009) and conflicts (Li & Li, 2014).

Our objective is to propose a method to estimate seasonal population
based on global, publicly available data. The proposed approach is based
on monthly composites of night-light satellite images that only recently
became available. The dataset is described in detail in the next section. The
method to use it as a proxy for monthly population estimates is then in-
troduced. The main novelty of this approach is that the strong correlation
of night-lights with population is exploited to derive monthly rather than
annual estimates, based on a new method developed to efficiently process
the satellite data. We believe that the proposed approach can fill the
current data-gap with respect to monthly population estimates and trigger
practical applications in this newly available human-geography time-scale.

2. Data and study are

The main information source to base the proposed estimates of
seasonal population are the night-lights as recorded by the Visible

Infrared Imaging Radiometer Suite (VIIRS), Day/Night Band (DNB)
sensor on-board the SUOMI satellites (Mills, Weiss, & Liang, 2013).
VIIRS data are average radiance composite images having excluded
data impacted by cloud-cover. VIIRS is the successor of the previously
used Defense Meteorological Satellite Program (DMSP) Operational
Linescan System (OLS) sensor. The DSMP/OLS series was discontinued
in 2013 (Elvidge et al., 2014). The main advantages of VIIRS compared
to the OLS are shown on Table 1 and explained in the remaining of this
section.

In a nutshell, the improvements by order of importance are (i)
spectral (ii) temporal and (iii) spatial resolutions. The major advance-
ment is the improved spectral resolution which now is sufficient to
overcome the saturation problem that significantly affected OLS
(Elvidge et al., 2014). The term saturation describes the situation when
the sensor records the maxim permissible value (DN = 63) while the
observed value is actually higher. Due to the initial purpose of opera-
tion (detection of clouds in the night), OLS was typically operated in a
high-gain setting i.e. by amplifying the incoming signal. A side effect of
this amplification is that the output signal is saturated above brightly lit
urban centers. Consequently, variations within urban centers cannot be
detected. The second major improvement is temporal resolution.
Whereas OLS data are distributed as annual rasters (a product known as
‘stable lights’), VIIRS data are distributed as monthly composites. This
improvement in temporal resolution opens up a new spectrum of ap-
plications, including the one presented here. The last improvement is in
spatial resolution. The pixel size became smaller. While this improve-
ment is enough to better distinguish features, its magnitude is not en-
ough to trigger new applications.

Nevertheless, VIIRS data has two major limitations. First, its time-
series is currently significantly shorter compared to that of OLS. In fact,
the time-series of VIIRS is currently so short it can only be used for
cohort analysis rather than for time-series analysis. The second problem
is that in the original VIIRS product (‘vcmcfg’) a lot of images are
contaminated by stray-light (Mills et al., 2013). Stray-light is light that
unexpectedly reaches the sensor during image formation due to design
failure. It is indicative that there are no data for June over Europe for
the original product due to stray-light. Data are missing for other
months also, depending on the area. Therefore, the analysis of the
summer period is impossible, given the quite extensive absence of data.
For this reason, the alternative product (‘vcmslcfg’) is used here with
radiance vales undergone a stray-light correction procedure (Mills
et al., 2013). Consequently, missing values is less of a problem.

Greece is selected as the specific country for method validation. It
receives major flows of tourists, particularly during the summer. The
annual amount of tourists is approximately 23.5 million, roughly two
times its resident population. At the same time, tourism accounts for
almost one-fifth of the national GDP. In addition, ownership of second-
houses is quite common. Approximately one third of citizens owns a
second house. Hellenic National Statistical Authority statistics have

Table 1
Comparison of main characteristics of OLS and VIIRS sensor.

DSMP/OLS SUOMI/VIIRS

Spectral bands commonly
used

1 panchromatic 1 panchromatic

Radiometric resolution 6 bits, values in [0,
63]

12 bits, values in [0,
4096]

Temporal resolution of
processed products

1 year 1 month

Spatial resolution of
processed products

1 km 0.75 km

Suitable for time series
analysis

Only after inter-
calibration

Yes, (ephemeral lights not
removed)

Time-series 1992–2013 2012 - today uncorrected
2014 – today stray-light
corrected
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been used as reference for the validation of the analysis. This is the
source for the resident population in 2011 census (http://www.
statistics.gr/el/statistics/-/publication/SAM03/2011) as well as arri-
vals by sea, aggregated in trimesters, (http://www.statistics.gr/el/
statistics/-/publication/SMA06/2016-Q4). The monthly counts of ar-
rivals to the islands by air, were obtained from the Hellenic Civil
Aviation Authority (http://www.ypa.gr/en/profile/statistics/
yearstatistics).

3. Method

3.1. Measuring seasonality by remote sensing

The first step of the method is to estimate the amount of average
lights per month, for each region. The commonly used Sum of Lights
(SoL) index is adopted (Elvidge et al., 2014):

∑= >SoL DN , for DN 2
i

i
(1)

where DNi are the digital number values of night-lights within a specific
region.

Small values are considered to be background noise and excluded
from calculation. SoL is used as a proxy of total (resident and seasonal)
ambient population at a given time. The average SoL per month is then
calculated for the three years that VIIRS night-lights are available in
order to reduce annual fluctuations due to weather, temporal lights and
other noise. Unlike OLS, VIIRS data has not undergone ephemeral lights
removal processing.

=
+ +

SoL
(SoL SoL SoL )

3mean
m

m m m
2014 2015 2016

(2)

where m in [1, 12] being each month of the year.
The process is shown, for one island as an example, in Fig. 1. It is

evident there that nighttime intensities for different months are some-
what different across the three years. The divergence is larger during
the summer period, presumably because it is more affected by tourism.
There are three main reasons for the fluctuations (i) national and in-
ternational factors affecting tourism such as the financial crisis, the
attempted coup in Turkey during July 2016, the different phases of the
Syrian conflict and refugees since 2011 etc. (ii) holidays with moving
dates, especially easter holidays (iii) noise in the data already men-
tioned such as stray-light, ephemeral lights etc. The proposed method
tries to deal with the first two factors by year averaging and with the
third by filtering. In this study area, VIIRS data are not expected to be
significantly affected by weather conditions. On one hand cloud-cover
is excluded by data design, on the other hand the amount of days with
snow coverage in this part of the globe is negligible.

Then, a quantity that we will call observed ‘seasonality coefficient’
is calculated as

=S SoL
SoL

m

obs
m

March (3)

again with m in [1, 12] being each month of the year.
The rational of dividing each month's value with that of March lies

in that month being generally considered to exhibit the lowest seasonal
activity. Therefore, March values should be regarded as the closest to
the resident population alone. This is the reason why March is normally
the census month in Greece. In effect sobs shows how many times the
activity of a specific month is higher compared to March. In other
words, the activity of a given month is expressed as a function of the
resident population, as perceived by night-lights. An example is shown
in Table 2 for the selected island. In this example, the average activity
in August is four times-March. The three annual time-series are rea-
sonably consistent but there are instances of irrational variations for the
same month, from one year to the next. Unreasonably low values are
sometimes present due to missing values, because of stray-light con-
tamination. Unreasonably high values are also sometimes present in the
data, mainly due to random special events such as forest fires etc.
Therefore, three rules where applied to filter out as much noise as
possible:

rule 1: < =
−

if SoL then SoL nullobs
m SoL

3 obs
mobs

median m1 m12
, SoLobsmedian

m1 − m12 is the median of all months and years
rule 2: if SoLobsm > 2 ∗ SoLobsmedian m then SoLobsm = null
rule 3: If SoLMarch = null, then use SoLFebruary or SoLApril in this

order, in Eq. (3).
Obviously these rules are subjective. Nevertheless, it is evident in

the results that the application of these rules effectively cleans the data
from most of the superficial fluctuation. Other filtering methods are
discussed latter on in the text.

Based on the seasonality coefficient (sobs), three additional features
are derived:

i) the peak month, i.e. the month when sobs reaches its maximum
value,

ii) the peak value, i.e. actual sobs value of the peak month.
iii) the season's length, defined as the number of months where

sobs > sobsMarch ∗ 1.5

The threshold value of 1.5 is chosen by visual examination of the
data in order to avoid noise and especially the Christmas effect. This is a
peak in December, in most spatial units, that can only be explained by
illuminating decorations for Christmas celebrations. The effect is visible
in Fig. 1 and Table 1. The actual threshold value is not critical for the
analysis as the same number is applied to all spatial units and it is
mainly used for visual inspection.

3.2. Validation – measuring seasonality by national statistics

The validation of results is quite difficult for the simple fact that
national sources lack seasonal population statistics. This highlights at

Fig. 1. Seasonal variation of SoL for one example – Myconos is-
land.
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the same time the importance of establishing a method to yield sea-
sonality estimates. The procedure to validate the results is to select a
number of islands as reference, shown in Fig. 2, where it is much easier
to capture the flows of people. The basic characteristics of the valida-
tion islands are summarized in Table 3.

Fortunately, monthly arrivals by air and by sea are recorded by the
national authorities. Arrivals by sea, recorded in trimesters, have been
disaggregated to monthly estimates by matching the distribution of
arrivals by air. The sum of air and sea arrivals yields the total arrivals
per month shown in Table 4. Note that some islands receive tourist
counts corresponding to many times their resident population (e.g. 8.5
times for Kos in August). Arrivals have been averaged per month for the
same three years as with the night-lights. Overall, arrivals by boat and
air should be more reliable compared to occupancy of touristic ac-
commodation data because arrivals are linked to security and safety
controls, thoroughly performed by the police and the coastguard,
leading to negligible if any ambiguity in recording the data.

In a similar manner, as we did with the night-lights, seasonality
coefficient is estimated, this time based on official statistics. It is as-
sumed that the total population on each island, at any given day, will be

= +P P Pt s r (4)

with Pt the total daily population, Ps the average daily seasonal popu-
lation and Pr the resident population (2011 census).

Table 2
Processed SoL values for Myconos island as an example.

. JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

2014 701 547 593 770 1300 1627 2154 2138 1583 1117 614 890
2015 630 618 506 884 1436 1795 2312 2383 1666 1262 868 837
2016 693 653 583 879 1559 1901 2649 2764 2239 1662 975 1092
SoLmean 675 606 561 844 1432 1774 2372 2428 1829 1347 819 940
sobs 1.2 1.1 1.0 1.5 2.6 3.2 4.2 4.3 3.3 2.4 1.5 1.7

Fig. 2. Validation islands.

Table 3
Basic characteristics of validation islands.

Islands Size (km2) Resident population 2011 Count of VIIRS pixels

Icaria 321.97 8,423 1,495
Sifnos 98.29 2,625 453
Thasos 508.69 13,770 2,373
Kefalonia 1,001.13 35,801 4,647
Kos 360.19 33,388 1,673
Skopelos 123.96 4,960 583
Myconos 133.54 10,134 617
Corfu 767.21 102,071 3,571
Naxos 542.33 17,930 2,511
Santorini 112.69 15,550 524
Paros 249.24 13,715 1,166
Milos 209.66 4,977 972
Karpathos 398.72 6,226 1,857
Skiathos 63.91 6,088 300
Serifos 95.82 1,420 442
Samos 607.59 32,977 2,822
Skyros 283.73 2,994 1,330

Min 63.913 1,420 300
Max 1,001.13 102,071 4,647
Mean 345.80 18,414.65 1,608
σ 265.50 24,232.56 1,233.18
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An estimate of the seasonal population based on available data can
be

=
∗P a d
30s (5)

with Ps the daily seasonal population and a the total arrivals per month
(air and sea). The denominator is the average days a month has, in
order to convert to daily estimates. Parameter d is the ‘average length of
stay of visitors’, i.e. the days spent by each visitor on the island. Based
on the UNCTAD (2007) Handbook of Statistics d = 5.37 Because of
second-houses and because the contribution of second-houses on
average length of stay varies per region this d value is meaningful only
as a starting point. Therefore values d Є [2, 10] were tested. Overall,
validation results, in terms of Pearson's correlation, show little sensi-
tivity in the setting of d. However, the estimation of absolute seasonal
population is heavily affected (as evident later in Eq. (7)). The seasonal
coefficient this time can be derived as:

=
+

=
+

∗
P P

P

P

P
s s r

r

a d
r

r
ref

30

(6)

with sref the seasonality coefficient based on official statistics, a the
total arrivals per month, d the average length of stay of visitors and Pr
the resident population.

The seasonality coefficient sref based on the census data for some of
the islands is shown on Fig. 3. Different seasonal patterns are evident in
terms of how spread the season is as well as how rapid the season goes
from one level to the other.

The overall objective of the seasonality coefficient s is to express the

total population of a spatial unit in a given month as a function of its
resident population (March), when it is assumed that there is no sea-
sonal population s = 1 and Pt = Pr. Absolute estimates of total monthly
population are obtained via the following equation:

= ∗P Pst robs (7)

The seasonality coefficient of Table 4 is shown on Table 5.

3.3. Validation – comparison of remote sensing and statistics estimates

We have obtained two independent seasonality coefficient esti-
mates. One by night-lights (sobs) and a reference one by official data
(sref). The Pearson's correlation of the two estimates is calculated to
evaluate the night-lights method. The average Pearson's correlation for
all the islands combined, with an average days of stay d = 5.37, is 0.85.
For d Є [2, 10] the Pearson's correlation varies± 0.02 of this value.
Individual correlation values are shown in Table 5. A diagram of the
two independent estimates for the test island is presented in Fig. 4.

As an example of deriving absolute total population estimates,
Myconos in August has s= 4.33 (Table 5.a) and knowing from 2011
census that its resident population was 10,134 inhabitants, Eq. (7)
yields PT = S ∗ Pr = 4.33 ∗ 10,134 = 43,880 people.

4. Results

The method that was validated in the selected islands was applied to
all municipalities of the country. The three derived seasonality quan-
tities are mapped on Figs. 5, 6, and 7. Fig. 5 shows the peak month,

Table 4
Average arrival values (air and sea).

Islands JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Icaria 3,087 2,473 3,214 6,028 6,466 8,567 19,602 21,264 12,599 4,854 3,245 3,572
Sifnos 1,059 1,217 1,744 7,010 8,134 7,980 23,792 23,579 18,689 2,799 1,211 1,061
Thasos 17,100 18,775 25,593 3,784 78,200 140,197 177,589 200,563 108,980 54,510 12,758 10,754
Kefalonia 32,307 37,123 43,459 14,349 102,374 164,972 217,150 219,570 146,034 88,153 17,856 16,236
Kos 17,441 16,067 21,154 33,122 155,510 215,012 283,231 284,027 202,749 106,238 8,636 8,744
Skopelos 1,991 2,167 2,950 469 9,694 17,382 31,153 35,188 19,119 5,880 1,359 1,150
Myconos 10,471 11,496 17,624 27,494 97,897 177,682 225,990 240,199 122,899 46,678 8,257 6,709
Corfu 40,228 39,178 53,334 59,075 217,270 332,549 391,409 386,689 272,633 169,248 21,377 20,346
Naxos 9,382 9,072 12,413 20,551 32,722 56,294 81,750 82,435 64,822 17,905 8,123 7,273
Santorini 17,043 19,596 32,068 70,049 161,618 224,467 281,222 287,891 206,773 78,291 22,830 16,212
Paros 11,635 13,368 19,264 51,962 62,016 62,196 162,585 161,176 127,738 27,935 12,094 10,589
Milos 2,326 2,215 2,653 6,306 10,863 17,363 36,650 36,262 28,540 4,572 2,873 2,469
Karpathos 2,009 1,596 2,136 3,001 9,598 19,869 28,450 29,569 19,007 3,789 1,833 1,833
Skiathos 3,342 3,655 4,970 1,576 32,554 58,362 83,644 94,465 51,329 9,538 2,220 1,874
Serifos 649 745 1,071 3,981 4,643 4,602 14,187 14,063 11,146 1,752 756 664
Samos 8,096 15,043 8,015 10,418 27,101 40,904 54,471 55,903 40,701 13,894 8,701 7,602
Skyros 2,248 3,449 3,354 3,945 5,291 9,634 17,113 18,065 8,074 3,447 2,428 2,091

NB for JUL–DEC only data for 2014–5 were available at the time of analysis.

Fig. 3. Seasonality coefficient sref based on national statistics for
some islands (d = 5.37).
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when seasonality gets its maximum value. Fig. 6 shows the maximum
value, observed during the peak month. Fig. 7 shows the length of the
season defined as how many months the seasonality coefficient ob-
served is 50% higher than that of March. The maps are in agreement
with the expected trend that coastal areas tend to peak around summer

whereas mainland areas during winter and spring. In less touristic
areas, with little annual variation, the Christmas effect has stronger
relative impact. Peak values do not necessarily reveal the most touristic
places but rather the areas that receive the most seasonal population
compared to their resident population. Season length highlights both

Table 5
Seasonal coefficients sobs and sref and their Pearson's correlation.

(a) sobs derived by night-lights

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

Icaria 1.23 0.77 1.00 1.09 1.18 1.27 1.79 2.20 1.18 1.06 0.92 1.26
Sifnos 1.47 1.25 1.00 1.47 2.26 2.79 3.64 4.78 2.64 1.58 1.72 2.24
Thasos 1.13 1.02 1.00 1.05 1.18 1.20 1.20 1.27 1.23 1.11 1.08 1.27
Kefalonia 1.28 1.17 1.00 1.19 1.43 1.54 1.71 1.88 1.48 1.18 1.17 1.66
Kos 1.06 1.11 1.00 1.16 1.71 1.80 1.83 1.66 1.62 1.55 1.20 1.26
Skopelos 2.01 1.25 1.00 1.04 1.68 2.10 2.77 3.24 2.19 1.38 1.53 2.44
Myconos 1.20 1.08 1.00 1.51 2.55 3.16 4.23 4.33 3.26 2.40 1.46 1.68
Corfu 1.10 0.94 1.00 1.07 1.30 1.44 1.46 1.50 1.31 1.13 1.06 1.37
Naxos 1.22 1.03 1.00 1.11 1.23 1.55 1.73 1.86 1.37 1.21 1.09 1.39
Santorini 1.04 1.06 1.00 1.37 1.71 2.09 2.30 2.27 2.00 1.82 1.31 1.32
Paros 1.18 0.87 1.00 1.26 1.49 1.85 2.75 3.08 1.81 1.33 1.06 1.47
Milos 1.06 0.98 1.00 1.60 1.72 1.83 2.06 2.16 1.61 1.34 1.14 1.26
Karpathos 1.35 1.10 1.00 1.30 1.08 2.28 2.54 2.54 2.14 1.61 1.22 1.67
Skiathos 1.19 0.97 1.00 1.04 1.45 1.58 1.81 1.84 1.33 1.07 1.01 1.08
Serifos 1.03 0.73 1.00 1.14 1.90 2.34 3.01 3.81 1.74 1.25 1.06 1.14
Samos 1.07 1.02 1.00 1.01 1.12 1.22 1.49 1.16 1.12 1.15 1.12 1.20
Skyros 1.76 1.35 1.00 1.37 1.99 2.56 3.12 5.24 2.35 1.63 2.06 2.15

(b) sref by national statistics (d= 5.37)

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC Pearson's cor.
(sobs − sref)

Icaria 1.06 1.05 1.07 1.12 1.13 1.18 1.40 1.44 1.26 1.10 1.07 1.07 0.90
Sifnos 1.07 1.08 1.11 1.46 1.54 1.53 2.57 2.56 2.23 1.18 1.08 1.07 0.87
Thasos 1.21 1.24 1.32 1.05 1.98 2.76 3.23 3.52 2.37 1.69 1.16 1.13 0.65
Kefalonia 1.16 1.18 1.21 1.07 1.49 1.80 2.05 2.06 1.71 1.43 1.09 1.08 0.73
Kos 1.09 1.08 1.11 1.17 1.81 2.12 2.47 2.47 2.05 1.55 1.04 1.04 0.91
Skopelos 1.07 1.08 1.10 1.02 1.34 1.61 2.09 2.23 1.67 1.20 1.05 1.04 0.80
Myconos 1.18 1.19 1.30 1.47 2.67 4.04 4.86 5.11 3.10 1.80 1.14 1.11 0.96
Corfu 1.07 1.07 1.09 1.10 1.37 1.56 1.66 1.66 1.46 1.29 1.04 1.03 0.82
Naxos 1.09 1.09 1.12 1.20 1.32 1.54 1.79 1.80 1.63 1.17 1.08 1.07 0.87
Santorini 1.19 1.22 1.36 1.78 2.80 3.50 4.13 4.21 3.30 1.87 1.25 1.18 0.94
Paros 1.15 1.17 1.24 1.66 1.78 1.79 3.05 3.04 2.61 1.35 1.15 1.13 0.92
Milos 1.08 1.08 1.09 1.22 1.38 1.60 2.27 2.26 1.99 1.16 1.10 1.09 0.87
Karpathos 1.06 1.04 1.06 1.08 1.26 1.55 1.79 1.82 1.53 1.10 1.05 1.05 0.90
Skiathos 1.09 1.10 1.14 1.04 1.93 2.66 3.38 3.69 2.46 1.27 1.06 1.05 0.96
Serifos 1.08 1.09 1.13 1.49 1.57 1.56 2.73 2.72 2.36 1.21 1.09 1.08 0.88
Samos 1.04 1.08 1.04 1.05 1.14 1.21 1.29 1.29 1.21 1.07 1.05 1.04 0.65
Skyros 1.13 1.20 1.19 1.23 1.31 1.56 1.99 2.04 1.47 1.20 1.14 1.12 0.86

Fig. 4. Comparing the two independent estimates of the seasonality
coefficient for Myconos.
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coastal touristic areas and winter destinations on the map.
The spatial level of analysis is very important. The choice of these

relatively fine areal units, reveals the actual magnitude of the phe-
nomenon, which is very unevenly distributed in space. Due to the
modifiable areal unit problem (MAUP) the level of aggregation sub-
stantially affects results. In specific, the effect of seasonality disappears
when using large administrative units, that tend to average it out.

5. Discussion

The main advantage of the remote sensing approach, compared to
the cell-phone data alternative, is that night-lights data are global and
public domain. The proposed method is based at the most detailed open
domain night-lights data available.

Things to consider regarding the method include first of all the noise

Fig. 5. Peak month.

Fig. 6. Peak value.
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present in the VIIRS night-lights. The stray-light corrected version is
consistent enough to be used for seasonal population estimates.
Ephemeral lights are removed here using rules but other methods are
also available in the literature. The most prominent of which is using
OLS as a mask, given that OLS has ephemeral lights removed (Li, Xu,
Chen, & Li, 2013). This is an open field for future research.

Also, some thresholds in the process have been determined by trial
and error, such as the one used to identify the peak month. As explained
earlier, these thresholds are justified because the same value is applied
to all spatial units concurrently. Scaling factors have also been used.
The most important of which is the mean length of stay. A starting value
has been obtained from the literature and a range of values has then
been explored to test for sensitivity. Overall the setting of this scaling
factor was found to be stable in terms of correlation of observed with
reference values.

In addition, using one value as the mean length of stay for all
geographical areas and all times within the year is a generalization that
introduces some error. The mean length of stay is most likely different
per category of visitor (e.g. hotel guests, second home owners, seasonal
workers) as well as within the year and across space. However, the
strong correlation of the observed and the reference values for the test
islands indicate that this generalization does not have the power to
significantly affect the accuracy of estimating the population stock ac-
tually present on an island at any time. The stability of the results
probably has to do with the fact that tourists consist of a much larger
proportion of the seasonal population compared to all other groups
(seasonal workers, second-house owners).

Moreover, 2011 census resident population is used as a constant for
all the years in this study (2014–2016), in the absence of more recent
data available. Although there is some mismatch due to this fact, the
change of residence population within a few years is typically negli-
gible. At national scale this change is as low as 3%.

The validation performed is somehow limited because it was done
by selecting a relatively small number of islands as reference. There is
no easy way to validate the method at the national scale because there
are no suitable data at that scale and also because of the averaging-out

effect already mentioned. Future work is required to assess the validity
of the approach in non-island areas provided that suitable reference
data exist.

The method would probably not perform well in areas with ex-
tensive snow cover in the winter as year-to-year fluctuations could be
attributed to weather rather than actual population changes. Also in
areas with very low seasonal variations the changes recorded by night-
lights are more likely to be attributed to celebration decorations rather
than seasonal population. These low activity areas are also more prone
to be affected by ephemeral events (forest fires, black-outs etc.) that are
not removed a priori in VIIRS.

It is understood that the emission of night-lights is not only a factor
of population size but also of population welfare levels, the state of
infrastructure etc. In Greece, the poorest region's GDP amounts to ap-
proximately half that of the richest. While the setting is definitely not
everywhere identical, the proposed analysis is valid because it is based
on comparing the same region at different times rather than comparing
different regions. Comparison across regions comes only when the
seasonality coefficient has been estimated. The seasonality coefficient
removes regional differences because each area is scaled by its own
lowest activity.

Furthermore, arrival data could include commuting travels of local
residents to the mainland and vice versa but in practice these numbers
are negligible. The reason is that travel times from the islands to the
mainland are so long that commuting is close to impossible. For ex-
ample, for the cluster of islands in the Aegean (Fig. 2, south-east
quadrant), one-way travel time to Athens by ferry boat ranges from
three to seventeen hours. Weather conditions, limited service during
the winter and ticket costs render the choice of systematic commuting
improbable. The cost of travel by air is prohibitive for the vast majority
of people and not all islands have and airfield. Travel between islands
for business and shopping is possible but limited to the very necessary
due to the associated time and cost. Illegal arrivals are not recorded in
the reference data but their amount is expected to be negligible for the
islands selected for validation. Arrivals by private boats are also not
recorded but it is expected that their impact is proportionally small

Fig. 7. Season length.
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given that the capacity of the marina's is relatively low.
Finally, in the proposed model visiting and resident population are

treated as equal contributors to nighttime light emissions. This is also a
generalization given that light emissions attributed to different popu-
lation groups are likely to be different. Installed public street lights
operate in a stable manner throughout the year. The additional light
associated with visiting population comes from private houses and
streets that are closed when the season is off, hotels and businesses that
are closed during the winter, and the increased car lights captured by
the sensor.

6. Conclusion

Overall, the newly available VIIRS night-lights provide an un-
precedented opportunity to map monthly variations of night-light and
therefore derive estimates of seasonal ambient population. The core
method could be transferred to other countries as this approach can be
used for both summer and winter population variations. Nevertheless,
different scaling factors should presumably be used based on local re-
ligious celebrations, weather conditions (extensive snow cover) etc.
Such estimates are very useful in a wide range of scientific fields in-
cluding planning. In case more frequent night-time data become
available in the future, e.g. weekly or daily, the method could be used
to derive public domain seasonal population estimates for a totally new
range of applications such as commuting patterns and migration due to
conflicts.
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