<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    Dear Michael,<br>
    <br>
    thank you very much for your very helpfull answer.<br>
    Obviously we agree on the dubious nature of the linear drift and
    that its origin from reduced precision round-off errors is doubtful.<br>
    In my opinion the occurence of a linear energy drift of this size
    could indicate a bug in the program.<br>
    So I startet a more rigorous investigation and would like to share
    some preliminary results:<br>
    <br>
    Graph of Verlet buffer-size vs. energy-drift size for single and
    double precision:<br>
<a class="moz-txt-link-freetext" href="https://www.dropbox.com/s/e56916inlm0ym48/buffersize-vs-total-energy-drift.png?dl=0">https://www.dropbox.com/s/e56916inlm0ym48/buffersize-vs-total-energy-drift.png?dl=0</a><br>
    <br>
    Graph of the linear total energy drift for a buffer-size of 0.02nm:<br>
<a class="moz-txt-link-freetext" href="https://www.dropbox.com/s/ifq3v3jwfzn4goh/4_nve_100ps_rlist-1.02_Total-Energy.png?dl=0">https://www.dropbox.com/s/ifq3v3jwfzn4goh/4_nve_100ps_rlist-1.02_Total-Energy.png?dl=0</a><br>
    <br>
    Exemplary mdp and log files for a buffer-size of 0.02nm:<br>
<a class="moz-txt-link-freetext" href="https://www.dropbox.com/s/peamt27d2exhclc/4_nve_100ps_rlist-1.02.mdp?dl=0">https://www.dropbox.com/s/peamt27d2exhclc/4_nve_100ps_rlist-1.02.mdp?dl=0</a><br>
<a class="moz-txt-link-freetext" href="https://www.dropbox.com/s/70ictqb6nbs94wk/4_nve_100ps_rlist-1.02.log?dl=0">https://www.dropbox.com/s/70ictqb6nbs94wk/4_nve_100ps_rlist-1.02.log?dl=0</a><br>
    <br>
    The investigated protein-water system consists of 22765 atoms, the
    AMBER99SB-ILDN force field with TIP3P water was used, all
    simulations were in the NVE-ensemble, GROMACS 4.6.7 was used.<br>
    <br>
    I will repeat the tests with GROMACS 5.0 and for different test
    systems (i.e. the lysozyme system from the popular lysozyme tutorial
    of Justin Lemkul).<br>
    <br>
    Best,<br>
    Bernhard<br>
    <br>
    <div class="moz-cite-prefix">Am 20/07/15 um 00:50 schrieb Shirts,
      Michael R. (mrs5pt):<br>
    </div>
    <blockquote
      cite="mid:D1D19173.6F07F%25mrs5pt@eservices.virginia.edu"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=windows-1252">
      <div>
        <div>
          <div>&gt; Do I have to switch to double precision if I care
            about energy conservation, integrator symplecticity, phase
            space volume conservation and ergodicity?</div>
        </div>
        <div><br>
        </div>
        <div>This sounds a like a good idea.  If you are doing tests
          where this matters, use double precision. Sounds like the
          safest. </div>
        <div><br>
        </div>
        <div>&gt; Since bigger round-off errors by reduced precision
          shouldn't accumulate linearly but at worst with Sqrt(N):
          Shouldn't one be worried about the occurence of a linear
          systematic error by only changing the precision from double to
          single in a calculation?</div>
        <div><br>
        </div>
        <div>Reduced precision errors only would be linear if the errors
          are uncorrelated, but it's not clear to me why roundoff errors
          would be uncorrelated.</div>
        <div><br>
        </div>
        <div>&gt; But if you have a constant downward drift of energy
          you must consider that there is less phase space volume at
          lower energies - so there is no volume conservation in phase
          space.</div>
        <div><br>
        </div>
        <div>Correct, for NVE.  For NVT,  the conserved energy is a
          bookkeeping number, it has nothing to do with the current
          phase space of the system. The thermostat is pumping in more
          energy so that the kinetic energy remains consistent with the
          desired temperature.  We then actually have a steady state
          system, rather than an equilibrium system.  The question is,
          how different is this distribution from the true equilibrium
          distribution?  </div>
        <div><br>
        </div>
        <div>This is generally testable.  For
          thermodynamic  calculations (which is what one presumably is
          intrested in with a thermostat, rather than the dynamics ),
          what really matters is 1) whether the correct distribution is
          obtained within noise and 2) whether the sampling is
          ergodic.  2) is very hard to answer, but 1) can be checked by
           </div>
      </div>
      <div><br>
      </div>
      <div><a moz-do-not-send="true"
          href="https://github.com/shirtsgroup/checkensemble">https://github.com/shirtsgroup/checkensemble</a></div>
      <div><br>
      </div>
      <div>With the theory described here:</div>
      <div><br>
      </div>
      <div><a moz-do-not-send="true"
          href="http://dx.doi.org/10.1021/ct300688p">http://dx.doi.org/10.1021/ct300688p</a></div>
      <div><br>
      </div>
      <div>Gromacs in single precisions seems to behave fine
        statistically for systems of a few hundred atoms.</div>
      <div><br>
      </div>
      <div>I suspect that there are subtle phenomena where the lack of
        exact symplecticness matters.  I also believe from my testing
        (no full paper on this) that there aren't very many that occur
        in highly chaotic systems with hundreds of particles at NIT.  </div>
      <div><br>
      </div>
      <div>I bet there are cases with just a few particles where the
        problems could become very obvious, however.</div>
      <div><br>
      </div>
      <div>Best,</div>
      <div>~~~~~~~~~~~~</div>
      <div>Michael Shirts</div>
      <div>Associate Professor</div>
      <div>Department of Chemical Engineering</div>
      <div>University of Virginia</div>
      <div><a moz-do-not-send="true"
          href="mailto:michael.shirts@virginia.edu">michael.shirts@virginia.edu</a></div>
      <div>(434) 243-1821</div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <div><br>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
    </blockquote>
    <br>
  </body>
</html>