<META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=utf-8">
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>

<META NAME="Generator" CONTENT="MS Exchange Server version 6.0.6487.1">
<TITLE>[gmx-users] Solvation Free Energy using PME</TITLE>
</HEAD>
<BODY dir=ltr>
<DIV>&nbsp;&nbsp;&nbsp;&nbsp; I think that this is an interesting problem. I am 
not an experienced GROMACS user, and my remark would rather refer to a more 
thereoretical point. The question depends on the definition of the solvation 
free energy. </DIV>
<DIV>&nbsp;&nbsp;&nbsp;&nbsp; If you want to see the free energy difference 
between a gaseous and an in-solution anion, then I think NO counterion should be 
added to the solution model. I&nbsp;presume that the free energy calculation 
would be performed by annihilation of the anion in the solvent. If the 
counterion is present then the anion-cation interaction will be ceased, which 
would have a large effect on the calculated value.</DIV>
<DIV>&nbsp;&nbsp;&nbsp;&nbsp; The corresponding physical procedure&nbsp;would 
be&nbsp;that the anion is being formed in the gas phase and enters the solvent 
without grabbing&nbsp;a cation, also necessarily&nbsp;encountering in the gas 
phase.&nbsp;This is difficult to perform technically, and I believe that the 
experimental values are determined by indirect procedures. You may want to 
consult the paper of Pearson (J.Am.Chem. Soc., 1986, 108, 6109) and that of 
Rossinsky (Chem. Rev., 1965, 65, 467).&nbsp;</DIV>
<DIV>&nbsp;&nbsp;&nbsp; So I think that no counterion should be 
considered.&nbsp;In this case,&nbsp;the Ewald in GROMACS may not work properly. 
But since a single anion in a solvent is not a real physical system (except 
under very special technical conditions), if one uses Ewald one would calculate 
anion-anion repulsive interactions without considering anion-cation attractive 
interactions, generally present for a real system.</DIV>
<DIV>&nbsp;&nbsp; For such a case, Jorgensen et al. (Chem. Phys., 1989, 129,193) 
used a cutoff and the Born approximation in Monte Carlo simulations. The Born 
radius was set to the cutoff. Good result was obtained</DIV>
<DIV>for the chloride anion.</DIV>
<DIV>in a dielectric with</DIV>
<DIV>&nbsp;</DIV>
<DIV>Peter Nagy</DIV>
<BLOCKQUOTE dir=ltr style="MARGIN-RIGHT: 0px">
  <DIV><FONT size=2>-----Original Message----- <BR><B>From:</B> 
  gmx-users-admin@gromacs.org&nbsp;on behalf of&nbsp;Ilya Chorny 
  <BR><B>Sent:</B> Tue 3/16/2004 3:02 AM <BR><B>To:</B> gmx-users@gromacs.org 
  <BR><B>Cc:</B> <BR><B>Subject:</B> [gmx-users] Solvation Free Energy using 
  PME<BR><BR></FONT></DIV><BR><BR>
  <P><FONT size=2>I would like to calc the solvation free energy of a negative 
  ion in water<BR>using perturbation.<BR>Is it possible using PME. If I include 
  a counter ion it will contribute to<BR>the solvation free energy?<BR>Could I 
  use a reaction field instead of PME(how different will my results<BR>be?). I 
  tried the switching<BR>function for my long range forces but I have been 
  experiencing instability<BR>using the switching<BR>function. Any 
  recomendations would be greatly 
  apprecited.<BR><BR>Thanks<BR><BR>Ilya<BR><BR><BR>_______________________________________________<BR>gmx-users 
  mailing list<BR>gmx-users@gromacs.org<BR><A 
  href="http://www.gromacs.org/mailman/listinfo/gmx-users">http://www.gromacs.org/mailman/listinfo/gmx-users</A><BR>Please 
  don't post (un)subscribe requests to the list. Use the<BR>www interface or 
  send it to 
gmx-users-request@gromacs.org.<BR></FONT></P></BLOCKQUOTE>

</BODY>
</HTML>