<span class="Apple-style-span" style="font-family: Times; font-size: 16px; "><div style="margin-top: 8px; margin-right: 8px; margin-bottom: 8px; margin-left: 8px; font: normal normal normal small/normal arial; "><div><div>
<div>Hi<div><br></div><div>I am having some pressure coupling issues. I have a fairly large protein/water system 400K+ atoms. It minimizes just fine (F &lt; 1000). If I run NVE it conserves energy with appropriate parameter settings. If I run NVT it is stable. When I turn on Pcoupl (i.e. Berendsen or Parinello Rahman), the system just continuously expands. My parameters are as follows. Any ideas?</div>
<div><br></div><div>Best,</div><div><br></div><div>Ilya</div><div><br></div><div><div>;</div><div>;       File &#39;mdout.mdp&#39; was generated</div><div>;       By user: relly (508)</div><div>;       On host: <a href="http://master.simprota.com">master.simprota.com</a></div>
<div>;       At date: Fri Mar  6 20:17:33 2009</div><div>;</div><div><br></div><div>; VARIOUS PREPROCESSING OPTIONS</div><div>; Preprocessor information: use cpp syntax.</div><div>; e.g.: -I/home/joe/doe -I/home/mary/hoe</div>
<div>include                  =</div><div>; e.g.: -DI_Want_Cookies -DMe_Too</div><div>define                   =</div><div><br></div><div>; RUN CONTROL PARAMETERS</div><div>integrator               = md</div><div>; Start time and timestep in ps</div>
<div>tinit                    = 0</div><div>dt                       = 0.004</div><div>;nsteps                   = 250000</div><div>nsteps                   = 2500000</div><div>; For exact run continuation or redoing part of a run</div>
<div>; Part index is updated automatically on checkpointing (keeps files separate)</div><div>simulation_part          = 1</div><div>init_step                = 0</div><div>; mode for center of mass motion removal</div><div>
comm_mode                = linear</div><div>; number of steps for center of mass motion removal</div><div>nstcomm                  = 1</div><div>; group(s) for center of mass motion removal</div><div>comm_grps                = system</div>
<div><br></div><div>; OUTPUT CONTROL OPTIONS</div><div>; Output frequency for coords (x), velocities (v) and forces (f)</div><div>nstxout                  = 0</div><div>nstvout                  = 0</div><div>nstfout                  = 0</div>
<div>                                    </div><div><div>; Output frequency for energies to log file and energy file</div><div>nstlog                   = 10</div><div>nstenergy                = 10</div><div>; Output frequency and precision for xtc file</div>
<div>nstxtcout                = 250</div><div>xtc-precision            = 1000</div><div>; This selects the subset of atoms for the xtc file. You can</div><div>; select multiple groups. By default all atoms will be written.</div>
<div>xtc-grps                 = protein</div><div>; Selection of energy groups</div><div>energygrps               =</div><div><br></div><div>; NEIGHBORSEARCHING PARAMETERS</div><div>; nblist update frequency</div><div>nstlist                  = 5</div>
<div>; ns algorithm (simple or grid)</div><div>ns_type                  = grid</div><div>; Periodic boundary conditions: xyz, no, xy</div><div>pbc                      = xyz</div><div>periodic_molecules       = no</div><div>
; nblist cut-off</div><div>rlist                    = 1.0</div><div><br></div><div>; OPTIONS FOR ELECTROSTATICS AND VDW</div><div>; Method for doing electrostatics</div><div>coulombtype              = PME</div><div>rcoulomb-switch          = .9</div>
<div>rcoulomb                 = 1.0</div><div>; Relative dielectric constant for the medium and the reaction field</div><div>epsilon-r                = 80</div><div>epsilon_rf               = 1</div><div>; Method for doing Van der Waals</div>
<div>vdw-type                 = Switch</div><div>; cut-off lengths</div><div>rvdw-switch              = .9</div><div>rvdw                     = 1.0</div><div>; Apply long range dispersion corrections for Energy and Pressure</div>
<div>DispCorr                 = EnerPres</div><div>; Extension of the potential lookup tables beyond the cut-off</div><div>table-extension          = 1</div><div>; Seperate tables between energy group pairs</div><div>energygrp_table          =</div>
<div>; Spacing for the PME/PPPM FFT grid</div><div>fourierspacing           = 0.12</div><div>; FFT grid size, when a value is 0 fourierspacing will be used</div><div>fourier_nx               = 0</div><div>fourier_ny               = 0</div>
<div>fourier_nz               = 0</div><div>; EWALD/PME/PPPM parameters</div><div>pme_order                = 4</div><div>ewald_rtol               = 1.e-05</div><div>ewald_geometry           = 3d</div><div>epsilon_surface          = 0</div>
<div>optimize_fft             = no</div><div><div>; OPTIONS FOR WEAK COUPLING ALGORITHMS</div><div>; Temperature coupling  </div><div>Tcoupl                   = V-rescale</div><div>; Groups to couple separately</div><div>
tc-grps                  = System</div><div>; Time constant (ps) and reference temperature (K)</div><div>tau_t                    = 0.1</div><div>ref_t                    = 298.0</div><div>; Pressure coupling     </div><div>
Pcoupl                   = Berendsen</div><div>Pcoupltype               = Isotropic</div><div>; Time constant (ps), compressibility (1/bar) and reference P (bar)</div><div>tau_p                    = 10 </div><div>compressibility          = 4.5e-5</div>
<div>ref_p                    = 1.01325</div><div>; Scaling of reference coordinates, No, All or COM</div><div>refcoord_scaling         = No</div><div>; Random seed for Andersen thermostat</div><div>andersen_seed            = 815131</div>
<div><br></div></div></div></div></div></div></div></div></span>