So I got my small water box (800 waters) to behave stably with pressure coupling after more minimization but I still can&#39;t get my large system to work with pressure coupling. I tried minimizing but I can never get the Fmax to be less 10^2, which is pretty normal for protein/water simulations of large proteins, at least from my experience.  I have since run 400 ps NVT as the system (425K atoms) is quite stable. The &lt;P.E.&gt; is 2E-05. Since I am using 4fs time steps gromacs won&#39;t let me use a tau_p less than .4. Not sure what else to do except run NVT, which is what I was going to do after I got the density equilibrated. BTW, I am using octahedral PBC, but that should not make a difference with respect to P coupling, should it? Below is my whole mdp file. As a reminder my density in the system goes from 1.0 - .1 in 10 ps with Pcoupl = Berendsen and Tau_p = .4. If I increase Tau_P then the amount of time it takes for my system to expand increases but it still expands.<div>
<br></div><div><div>;</div><div>;       File &#39;mdout.mdp&#39; was generated</div><div>;       By user: relly (508)</div><div>;       On host: <a href="http://master.simprota.com">master.simprota.com</a></div><div>;       At date: Fri Mar  6 20:17:33 2009</div>
<div>;</div><div><br></div><div>; VARIOUS PREPROCESSING OPTIONS</div><div>; Preprocessor information: use cpp syntax.</div><div>; e.g.: -I/home/joe/doe -I/home/mary/hoe</div><div>include                  =</div><div>; e.g.: -DI_Want_Cookies -DMe_Too</div>
<div>define                   =</div><div><br></div><div>; RUN CONTROL PARAMETERS</div><div>integrator               = md</div><div>; Start time and timestep in ps</div><div>tinit                    = 0</div><div>dt                       = 0.004</div>
<div>;nsteps                   = 250000</div><div>nsteps                   = 2500000</div><div>; For exact run continuation or redoing part of a run</div><div>; Part index is updated automatically on checkpointing (keeps files separate)</div>
<div>simulation_part          = 1</div><div>init_step                = 0</div><div>; mode for center of mass motion removal</div><div>comm_mode                = linear</div><div>; number of steps for center of mass motion removal</div>
<div>nstcomm                  = 1</div><div>; group(s) for center of mass motion removal</div><div>comm_grps                = system</div><div><br></div><div>; LANGEVIN DYNAMICS OPTIONS</div><div>; Friction coefficient (amu/ps) and random seed</div>
<div>bd-fric                  = 0</div><div>ld-seed                  = 1993</div><div><br></div><div>; ENERGY MINIMIZATION OPTIONS</div><div>; Force tolerance and initial step-size</div><div>emtol                    = 10</div>
<div>emstep                   = 0.01</div><div>; Max number of iterations in relax_shells</div><div>niter                    = 20</div><div>; Step size (ps^2) for minimization of flexible constraints</div><div>fcstep                   = 0</div>
<div>; Frequency of steepest descents steps when doing CG</div><div>nstcgsteep               = 1000</div><div>nbfgscorr                = 10</div><div><br></div><div>; TEST PARTICLE INSERTION OPTIONS</div><div>rtpi                     = 0.05</div>
<div><br></div><div>; OUTPUT CONTROL OPTIONS</div><div>; Output frequency for coords (x), velocities (v) and forces (f)</div><div>nstxout                  = 12500</div><div>nstvout                  = 0</div><div>nstfout                  = 0</div>
<div>; Output frequency for energies to log file and energy file</div><div>nstlog                   = 10</div><div>nstenergy                = 10</div><div>; Output frequency and precision for xtc file</div><div><div>nstxtcout                = 250</div>
<div>xtc-precision            = 1000</div><div>; This selects the subset of atoms for the xtc file. You can</div><div>; select multiple groups. By default all atoms will be written.</div><div>xtc-grps                 = protein</div>
<div>; Selection of energy groups</div><div>energygrps               = Protein SOL</div><div><br></div><div>; NEIGHBORSEARCHING PARAMETERS</div><div>; nblist update frequency</div><div>nstlist                  = 5</div><div>
; ns algorithm (simple or grid)</div><div>ns_type                  = grid</div><div>; Periodic boundary conditions: xyz, no, xy</div><div>pbc                      = xyz</div><div>periodic_molecules       = no</div><div>; nblist cut-off</div>
<div>rlist                    = 1.0</div><div><br></div><div>; OPTIONS FOR ELECTROSTATICS AND VDW</div><div>; Method for doing electrostatics</div><div>coulombtype              = PME</div><div>rcoulomb-switch          = .9</div>
<div>rcoulomb                 = 1.0</div><div>; Relative dielectric constant for the medium and the reaction field</div><div>epsilon-r                = 80</div><div>epsilon_rf               = 1</div><div>; Method for doing Van der Waals</div>
<div>vdw-type                 = Switch</div><div>; cut-off lengths</div><div>rvdw-switch              = .8</div><div>rvdw                     = 1.0</div><div>; Apply long range dispersion corrections for Energy and Pressure</div>
<div>DispCorr                 = EnerPres</div><div>; Extension of the potential lookup tables beyond the cut-off</div><div>table-extension          = 1</div><div>; Seperate tables between energy group pairs</div><div>energygrp_table          =</div>
<div>; Spacing for the PME/PPPM FFT grid</div><div>fourierspacing           = 0.12</div><div>; FFT grid size, when a value is 0 fourierspacing will be used</div><div>fourier_nx               = 0</div><div>fourier_ny               = 0</div>
<div>fourier_nz               = 0</div><div>; EWALD/PME/PPPM parameters</div><div>pme_order                = 4</div><div>ewald_rtol               = 1.e-05</div><div>ewald_geometry           = 3d</div><div>epsilon_surface          = 0</div>
<div>optimize_fft             = no</div><div><br></div><div>; IMPLICIT SOLVENT ALGORITHM</div><div>implicit_solvent         = No</div><div><br></div><div>; GENERALIZED BORN ELECTROSTATICS</div><div>; Algorithm for calculating Born radii</div>
<div>gb_algorithm             = Still</div><div>; Frequency of calculating the Born radii inside rlist</div><div>nstgbradii               = 1</div><div><div>; Cutoff for Born radii calculation; the contribution from atoms</div>
<div>; between rlist and rgbradii is updated every nstlist steps</div><div>rgbradii                 = 2 </div><div>; Dielectric coefficient of the implicit solvent</div><div>gb_epsilon_solvent       = 80</div><div>; Salt concentration in M for Generalized Born models</div>
<div>gb_saltconc              = 0</div><div>; Scaling factors used in the OBC GB model. Default values are OBC(II)</div><div>gb_obc_alpha             = 1</div><div>gb_obc_beta              = 0.8</div><div>gb_obc_gamma             = 4.85</div>
<div>; Surface tension (kJ/mol/nm^2) for the SA (nonpolar surface) part of GBSA</div><div>; The default value (2.092) corresponds to 0.005 kcal/mol/Angstrom^2.</div><div>sa_surface_tension       = 2.092</div><div><br></div>
<div>; OPTIONS FOR WEAK COUPLING ALGORITHMS</div><div>; Temperature coupling</div><div>Tcoupl                   = V-rescale</div><div>; Groups to couple separately</div><div>tc-grps                  = System</div><div>; Time constant (ps) and reference temperature (K)</div>
<div>tau_t                    = 1.0</div><div>ref_t                    = 298.0</div><div>; Pressure coupling</div><div>Pcoupl                   = No</div><div>Pcoupltype               = Isotropic</div><div>; Time constant (ps), compressibility (1/bar) and reference P (bar)</div>
<div>tau_p                    = 10 </div><div>compressibility          = 4.5e-5</div><div>ref_p                    = 1.01325</div><div>; Scaling of reference coordinates, No, All or COM</div><div>refcoord_scaling         = No</div>
<div>; Random seed for Andersen thermostat</div><div>andersen_seed            = 815131</div><div><br></div><div>; OPTIONS FOR QMMM calculations</div><div>QMMM                     = no</div><div>; Groups treated Quantum Mechanically</div>
<div>QMMM-grps                = </div><div>; QM method   </div><div>QMmethod                 = </div><div>; QMMM scheme</div><div>QMMMscheme               = normal</div><div>; QM basisset</div><div>QMbasis                  = </div>
<div>; QM charge</div><div>QMcharge                 = </div><div>; QM multiplicity</div><div>QMmult                   = </div><div>; Surface Hopping</div><div>SH                       =</div><div>; CAS space options     </div>
<div>CASorbitals              = </div><div>CASelectrons             =</div><div>SAon                     = </div><div>SAoff                    =  </div><div>SAsteps                  = </div><div>; Scale factor for MM charges</div>
<div>MMChargeScaleFactor      = 1</div><div><div>; Optimization of QM subsystem</div><div>bOPT                     =</div><div>bTS                      =</div><div><br></div><div>; SIMULATED ANNEALING</div><div>; Type of annealing for each temperature group (no/single/periodic)</div>
<div>annealing                =</div><div>; Number of time points to use for specifying annealing in each group</div><div>annealing_npoints        =</div><div>; List of times at the annealing points for each group</div><div>
annealing_time           =</div><div>; Temp. at each annealing point, for each group.</div><div>annealing_temp           =</div><div><br></div><div>; GENERATE VELOCITIES FOR STARTUP RUN</div><div>gen_vel                  = yes</div>
<div>gen_temp                 = 298.0</div><div>gen-seed                 = 173529</div><div><br></div><div>; OPTIONS FOR BONDS</div><div>constraints              = all-bonds</div><div>; Type of constraint algorithm</div><div>
constraint-algorithm     = lincs</div><div>; Do not constrain the start configuration</div><div>continuation             = no</div><div>; Use successive overrelaxation to reduce the number of shake iterations</div><div>Shake-SOR                = no</div>
<div>; Relative tolerance of shake</div><div>shake-tol                = 0.0001</div><div>; Highest order in the expansion of the constraint coupling matrix</div><div>lincs-order              = 6</div><div>; Number of iterations in the final step of LINCS. 1 is fine for</div>
<div>; normal simulations, but use 2 to conserve energy in NVE runs.</div><div>; For energy minimization with constraints it should be 4 to 8.</div><div>lincs-iter               = 2</div><div>; Lincs will write a warning to the stderr if in one step a bond</div>
<div>; rotates over more degrees than</div><div>lincs-warnangle          = 30</div><div>; Convert harmonic bonds to morse potentials</div><div>morse                    = no</div><div><br></div><div>; ENERGY GROUP EXCLUSIONS</div>
<div>; Pairs of energy groups for which all non-bonded interactions are excluded</div><div>energygrp_excl           =</div><div><br></div><div>; WALLS</div><div>; Number of walls, type, atom types, densities and box-z scale factor for Ewald</div>
<div>nwall                    = 0</div><div>wall_type                = 9-3</div><div>wall_r_linpot            = -1</div><div>wall_atomtype            =</div><div>                                     </div><div><div>; COM PULLING</div>
<div>; Pull type: no, umbrella, constraint or constant_force</div><div>pull                     = no</div><div><br></div><div>; NMR refinement stuff</div><div>; Distance restraints type: No, Simple or Ensemble</div><div>disre                    = No</div>
<div>; Force weighting of pairs in one distance restraint: Conservative or Equal</div><div>disre-weighting          = Conservative</div><div>; Use sqrt of the time averaged times the instantaneous violation</div><div>disre-mixed              = no</div>
<div>disre-fc                 = 1000</div><div>disre-tau                = 0</div><div>; Output frequency for pair distances to energy file</div><div>nstdisreout              = 100</div><div>; Orientation restraints: No or Yes</div>
<div>orire                    = no</div><div>; Orientation restraints force constant and tau for time averaging</div><div>orire-fc                 = 0</div><div>orire-tau                = 0</div><div>orire-fitgrp             =</div>
<div>; Output frequency for trace(SD) and S to energy file</div><div>nstorireout              = 100</div><div>; Dihedral angle restraints: No or Yes</div><div>dihre                    = no</div><div>dihre-fc                 = 1000</div>
<div><br></div><div>; Free energy control stuff</div><div>free-energy              = no</div><div>init-lambda              = 0</div><div>delta-lambda             = 0</div><div>sc-alpha                 = 0</div><div>sc-power                 = 0</div>
<div>sc-sigma                 = 0.3</div><div>couple-moltype           =</div><div>couple-lambda0           = vdw-q</div><div>couple-lambda1           = vdw-q</div><div>couple-intramol          = no</div><div><br></div><div>
; Non-equilibrium MD stuff</div><div>acc-grps                 =</div><div>accelerate               =</div><div>freezegrps               =</div><div>freezedim                =</div><div>cos-acceleration         = 0</div><div>
deform                   =</div><div><br></div><div>; Electric fields</div><div>; Format is number of terms (int) and for all terms an amplitude (real)</div><div>; and a phase angle (real)</div><div>E-x                      =</div>
<div>E-xt                     =</div><div>E-y                      =</div><div>E-yt                     =</div><div>E-z                      =</div><div>E-zt                     =</div><div>                                    </div>
</div></div><div>                                            </div></div></div><div><br><div class="gmail_quote">On Wed, Apr 8, 2009 at 1:00 PM, Joe Joe <span dir="ltr">&lt;<a href="mailto:ilchorny@gmail.com">ilchorny@gmail.com</a>&gt;</span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex;"><br><br><div class="gmail_quote"><div class="im">On Wed, Apr 8, 2009 at 11:31 AM, Roland Schulz <span dir="ltr">&lt;<a href="mailto:roland@utk.edu" target="_blank">roland@utk.edu</a>&gt;</span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<br><br><div class="gmail_quote"><div>On Wed, Apr 8, 2009 at 7:53 AM, Joe Joe <span dir="ltr">&lt;<a href="mailto:ilchorny@gmail.com" target="_blank">ilchorny@gmail.com</a>&gt;</span> wrote:<br><blockquote class="gmail_quote" style="border-left:1px solid rgb(204, 204, 204);margin:0pt 0pt 0pt 0.8ex;padding-left:1ex">



HI Chris,<br><br><div class="gmail_quote"><div>On Tue, Apr 7, 2009 at 9:31 PM,  <span dir="ltr">&lt;<a href="mailto:chris.neale@utoronto.ca" target="_blank">chris.neale@utoronto.ca</a>&gt;</span> wrote:<br><blockquote class="gmail_quote" style="border-left:1px solid rgb(204, 204, 204);margin:0pt 0pt 0pt 0.8ex;padding-left:1ex">




Hi Ilya,<br>
<br>
First thing that comes to mind is that it is strange to couple a coulombic switching function with PME. While this could possibly be done correctly, I doubt that it is in fact done in the way that you expect (i.e. correctly) in gromacs. In fact, I think that grompp/mdrun should probably throw an error here -- unless it is actually handled in the proper way, and a developer could help you here to figure out if you are indeed getting what you desire.<br>





<br>
coulombtype              = PME<br>
rcoulomb-switch          = .9<br>
rcoulomb                 = 1.0</blockquote><div><br></div></div><div>I am pretty sure gromacs ignores the rcoulomb-switch parameter in the case of PME but I will give it a try.</div></div></blockquote></div><div><br>It is indeed supported and does work correctly. But you have to set coulombtype PME-Switch. mdp options says:<br>



&quot;This is mainly useful constant energy simulations. For constant temperature
simulations the advantage of improved energy conservation
is usually outweighed by the small loss in accuracy of the electrostatics.
&quot;<br> <br>Roland</div></div></blockquote><div><br></div></div><div>Yes, my point was that when electrostatics = PME then Gromacs ignores  the rcoulomb-switch parameter.</div><div><div></div><div class="h5"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">

<div class="gmail_quote"><div><br><br></div><div><div></div><div><blockquote class="gmail_quote" style="border-left:1px solid rgb(204, 204, 204);margin:0pt 0pt 0pt 0.8ex;padding-left:1ex"><div class="gmail_quote">
<div></div><div><div></div><div>


<div><br></div><blockquote class="gmail_quote" style="border-left:1px solid rgb(204, 204, 204);margin:0pt 0pt 0pt 0.8ex;padding-left:1ex"><br>
<br>
Chris<br>
<br>
-- original message --<br>
<br>
Hi<br>
I am having some pressure coupling issues. I have a fairly large<br>
protein/water system 400K+ atoms. It minimizes just fine (F &lt; 1000). If I<br>
run NVE it conserves energy with appropriate parameter settings. If I run<br>
NVT it is stable. When I turn on Pcoupl (i.e. Berendsen or Parinello<br>
Rahman), the system just continuously expands. My parameters are as follows.<br>
Any ideas?<br>
<br>
Best,<br>
<br>
Ilya<br>
<br>
;<br>
;       File &#39;mdout.mdp&#39; was generated<br>
;       By user: relly (508)<br>
;       On host: <a href="http://master.simprota.com" target="_blank">master.simprota.com</a><br>
;       At date: Fri Mar  6 20:17:33 2009<br>
;<br>
<br>
; VARIOUS PREPROCESSING OPTIONS<br>
; Preprocessor information: use cpp syntax.<br>
; e.g.: -I/home/joe/doe -I/home/mary/hoe<br>
include                  =<br>
; e.g.: -DI_Want_Cookies -DMe_Too<br>
define                   =<br>
<br>
; RUN CONTROL PARAMETERS<br>
integrator               = md<br>
; Start time and timestep in ps<br>
tinit                    = 0<br>
dt                       = 0.004<br>
;nsteps                   = 250000<br>
nsteps                   = 2500000<br>
; For exact run continuation or redoing part of a run<br>
; Part index is updated automatically on checkpointing (keeps files<br>
separate)<br>
simulation_part          = 1<br>
init_step                = 0<br>
; mode for center of mass motion removal<br>
comm_mode                = linear<br>
; number of steps for center of mass motion removal<br>
nstcomm                  = 1<br>
; group(s) for center of mass motion removal<br>
comm_grps                = system<br>
<br>
; OUTPUT CONTROL OPTIONS<br>
; Output frequency for coords (x), velocities (v) and forces (f)<br>
nstxout                  = 0<br>
nstvout                  = 0<br>
nstfout                  = 0<br>
<br>
; Output frequency for energies to log file and energy file<br>
nstlog                   = 10<br>
nstenergy                = 10<br>
; Output frequency and precision for xtc file<br>
nstxtcout                = 250<br>
xtc-precision            = 1000<br>
; This selects the subset of atoms for the xtc file. You can<br>
; select multiple groups. By default all atoms will be written.<br>
xtc-grps                 = protein<br>
; Selection of energy groups<br>
energygrps               =<br>
<br>
; NEIGHBORSEARCHING PARAMETERS<br>
; nblist update frequency<br>
nstlist                  = 5<br>
; ns algorithm (simple or grid)<br>
ns_type                  = grid<br>
; Periodic boundary conditions: xyz, no, xy<br>
pbc                      = xyz<br>
periodic_molecules       = no<br>
; nblist cut-off<br>
rlist                    = 1.0<br>
<br>
; OPTIONS FOR ELECTROSTATICS AND VDW<br>
; Method for doing electrostatics<br>
coulombtype              = PME<br>
rcoulomb-switch          = .9<br>
rcoulomb                 = 1.0<br>
; Relative dielectric constant for the medium and the reaction field<br>
epsilon-r                = 80<br>
epsilon_rf               = 1<br>
; Method for doing Van der Waals<br>
vdw-type                 = Switch<br>
; cut-off lengths<br>
rvdw-switch              = .9<br>
rvdw                     = 1.0<br>
; Apply long range dispersion corrections for Energy and Pressure<br>
DispCorr                 = EnerPres<br>
; Extension of the potential lookup tables beyond the cut-off<br>
table-extension          = 1<br>
; Seperate tables between energy group pairs<br>
energygrp_table          =<br>
; Spacing for the PME/PPPM FFT grid<br>
fourierspacing           = 0.12<br>
; FFT grid size, when a value is 0 fourierspacing will be used<br>
fourier_nx               = 0<br>
fourier_ny               = 0<br>
fourier_nz               = 0<br>
; EWALD/PME/PPPM parameters<br>
pme_order                = 4<br>
ewald_rtol               = 1.e-05<br>
ewald_geometry           = 3d<br>
epsilon_surface          = 0<br>
optimize_fft             = no<br>
; OPTIONS FOR WEAK COUPLING ALGORITHMS<br>
; Temperature coupling<br>
Tcoupl                   = V-rescale<br>
; Groups to couple separately<br>
tc-grps                  = System<br>
; Time constant (ps) and reference temperature (K)<br>
tau_t                    = 0.1<br>
ref_t                    = 298.0<br>
; Pressure coupling<br>
Pcoupl                   = Berendsen<br>
Pcoupltype               = Isotropic<br>
; Time constant (ps), compressibility (1/bar) and reference P (bar)<br>
tau_p                    = 10<br>
compressibility          = 4.5e-5<br>
ref_p                    = 1.01325<br>
; Scaling of reference coordinates, No, All or COM<br>
refcoord_scaling         = No<br>
; Random seed for Andersen thermostat<br>
andersen_seed            = 815131<br>
-------------- next part --------------<br>
An HTML attachment was scrubbed...<br>
<br>
_______________________________________________<br>
gmx-users mailing list    <a href="mailto:gmx-users@gromacs.org" target="_blank">gmx-users@gromacs.org</a><br>
<a href="http://www.gromacs.org/mailman/listinfo/gmx-users" target="_blank">http://www.gromacs.org/mailman/listinfo/gmx-users</a><br>
Please search the archive at <a href="http://www.gromacs.org/search" target="_blank">http://www.gromacs.org/search</a> before posting!<br>
Please don&#39;t post (un)subscribe requests to the list. Use thewww interface or send it to <a href="mailto:gmx-users-request@gromacs.org" target="_blank">gmx-users-request@gromacs.org</a>.<br>
Can&#39;t post? Read <a href="http://www.gromacs.org/mailing_lists/users.php" target="_blank">http://www.gromacs.org/mailing_lists/users.php</a><br>
</blockquote></div></div></div><br>
<br>_______________________________________________<br>
gmx-users mailing list    <a href="mailto:gmx-users@gromacs.org" target="_blank">gmx-users@gromacs.org</a><br>
<a href="http://www.gromacs.org/mailman/listinfo/gmx-users" target="_blank">http://www.gromacs.org/mailman/listinfo/gmx-users</a><br>
Please search the archive at <a href="http://www.gromacs.org/search" target="_blank">http://www.gromacs.org/search</a> before posting!<br>
Please don&#39;t post (un)subscribe requests to the list. Use the<br>
www interface or send it to <a href="mailto:gmx-users-request@gromacs.org" target="_blank">gmx-users-request@gromacs.org</a>.<br>
Can&#39;t post? Read <a href="http://www.gromacs.org/mailing_lists/users.php" target="_blank">http://www.gromacs.org/mailing_lists/users.php</a><br></blockquote></div></div></div><font color="#888888"><br><br clear="all">

<br>-- <br>ORNL/UT Center for Molecular Biophysics <a href="http://cmb.ornl.gov" target="_blank">cmb.ornl.gov</a><br>

865-241-1537, ORNL PO BOX 2008 MS6309<br>
</font><br>_______________________________________________<br>
gmx-users mailing list    <a href="mailto:gmx-users@gromacs.org" target="_blank">gmx-users@gromacs.org</a><br>
<a href="http://www.gromacs.org/mailman/listinfo/gmx-users" target="_blank">http://www.gromacs.org/mailman/listinfo/gmx-users</a><br>
Please search the archive at <a href="http://www.gromacs.org/search" target="_blank">http://www.gromacs.org/search</a> before posting!<br>
Please don&#39;t post (un)subscribe requests to the list. Use the<br>
www interface or send it to <a href="mailto:gmx-users-request@gromacs.org" target="_blank">gmx-users-request@gromacs.org</a>.<br>
Can&#39;t post? Read <a href="http://www.gromacs.org/mailing_lists/users.php" target="_blank">http://www.gromacs.org/mailing_lists/users.php</a><br></blockquote></div></div></div><br>
</blockquote></div><br></div></div>