Hi Justin,<br><br>I got it now. During the 10fs, even water molecules with a speed of 500 m/s only have a 0.005 nm displacement, which is far less than than 0.9 nm or 1.4 nm.<br><br>Thanks again!<br><br>Yun<br><br><br>Yun Shi wrote:<br>


&gt; Hi Justin and Mark,<br>
&gt;<br>
&gt; Thank you very much for the reply.<br>
&gt;<br>
&gt; I was using table 7 (Normal van der Waals Parameters) to calculate<br>
&gt; non-bonded vdw interactions that are not between third neighbors, such<br>
&gt; as CH1 carbons between different chains in a biomolecular system.<br>
&gt; Anything wrong here?<br>
&gt;<br>
&gt; I understand that it is the force that dictates the MD evolution, and I<br>
&gt; calculated in this case as F = 12 * 9.85^2 / 1.5^13 = 5.98 kJ/mol/nm for<br>
&gt; the repulsion term. The force from different directions on a atom in a<br>
&gt; homogeneous system would cancel each other to some extend, but what<br>
&gt; about the energy arises from this interaction? Would this considerably<br>
&gt; affect the calculation of, say, binding energy of a ligand to a receptor<br>
&gt; from thermodynamic integration or pulling simulation?<br>
&gt;<br>
<br>
Check your units and the column headings of Table 7.  Plugging in 9.85 as the<br>
energy will give you a wildly inflated result.  The C12 parameters listed are<br>
actually square roots and listed as 10^-3.  I think you will find the resulting<br>
energies and forces are vastly smaller for a simple interaction between two atoms.<br>
<br>
&gt; Besides, the GROMOS 53a6 paper used triple range scheme for calculations<br>
&gt; of nonbonded interactions, and I guess it was rlist = 0.8 nm while rvdw<br>
&gt; = rcoulomb = 1.4 nm. So is this considered to be accurate enough in<br>
&gt; calculating free enthalpies of solvation since we know the interactions<br>
&gt; between 0.8 and 1.4 nm were calculated every 5 steps?<br>
&gt;<br>
<br>
There is no need to update the neighbor list every single step.  Typically,<br>
water is the fastest-diffusing molecule in the system, but it will generally not<br>
have a dramatic displacement on the scale of 10 fs or so.<br>
<br>
&gt; The paper also used reaction-field instead PME to account for long-range<br>
&gt; electrostatic interactions. I heard some people argue that PME would be<br>
&gt; more accurate and it seemed to be utilized more often even in gromacs<br>
&gt; tutorials. So does this mean certain accuracy could be achieved by using<br>
&gt; triple range scheme and reaction-field together because the errors they<br>
&gt; incur respectively somehow cancel out each other?<br>
&gt;<br>
<br>
PME is substantially more accurate.  Using it also requires rlist=rcoulomb, so<br>
the exact details of the Gromos96 derivation may be somewhat outdated.  Typical<br>
settings for Gromos96 would be something like:<br>
<br>
rlist = 0.9<br>
rcoulomb = 0.9<br>
rvdw = 1.4<br>
nstlist = 5<br>
coulombtype = PME<br>
<br>
Note that the value of rcoulomb and rlist can vary a bit as a consequence of PME.<br>
<br>
-Justin<br>
<br>
&gt; Thanks a lot,<br>
&gt;<br>
&gt; Yun Shi<br>
&gt;<br>
&gt;<br>
&gt; On 04/08/11, &quot;Justin A. Lemkul&quot;  &lt;<a href="mailto:jalemkul@vt.edu">jalemkul@vt.edu</a><br>
&gt; &lt;mailto:<a href="mailto:jalemkul@vt.edu">jalemkul@vt.edu</a>&gt;&gt; wrote:<br>
&gt;  &gt;<br>
&gt;  &gt;<br>
&gt;  &gt; Yun Shi wrote:<br>
&gt;  &gt; &gt;Hi all,<br>
&gt;  &gt; &gt;<br>
&gt;  &gt; &gt;I am working with GROMOS 53a6 ff in GROMACS 4.5, and I assume a<br>
&gt; Lennard-Jones interaction function was used for short-range vdw<br>
&gt; interactions.<br>
&gt;  &gt; &gt;<br>
&gt;  &gt; &gt; From the reference paper /A Biomolecular Force Field Based on the<br>
&gt; Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field<br>
&gt; Parameter Sets 53A5 and 53A6/, I found that for example,<br>
&gt;  &gt; &gt;<br>
&gt;  &gt; &gt;when rvdw = 1.5nm, the repulsion term of the interaction between two<br>
&gt; CH1 type atoms (C12ij = 9.85^2) can be calculated as 9.850*9.850 /<br>
&gt; (1.5^12) = 0.747786 kJ/mol. So I wonder if this value is considered to<br>
&gt; be small enough to be ignored.<br>
&gt;  &gt;<br>
&gt;<br>
&gt; You should pay attention to the column headings in table 7 so that you<br>
&gt; can compute the contribution correctly. However, the magnitude of the<br>
&gt; energy of any particular interaction is not really of any concern. The<br>
&gt; evolution of the system depends on the *forces*, and it is likely that<br>
&gt; the sum of the forces on any atom from all its repulsion interactions<br>
&gt; from atoms that are (say) 1.4nm to 1.5nm away is very close to zero,<br>
&gt; except in highly non-homogeneous spatial distributions of particles. In<br>
&gt; any case, the sum of that contribution will be much smaller than the<br>
&gt; other contributions.<br>
&gt;<br>
&gt; Mark<br>
&gt;<br>
&gt;  &gt;<br>
&gt;  &gt; &gt;<br>
&gt;  &gt; &gt;In addition, it seems not until 5 nm does the dispersion term become<br>
&gt; larger than the repulsion term in this case, so would turning on<br>
&gt; Dispersion Correction between, say 1.5 to 5 nm introduce more errors<br>
&gt; than turning it off?<br>
&gt;  &gt; &gt;<br>
&gt;  &gt;<br>
&gt;  &gt; You should use the cutoff described the authors of the force field,<br>
&gt; in this case rvdw=1.4.  Unless you can demonstrate that by using a<br>
&gt; different value you can achieve superior results, stick with the<br>
&gt; specifics of parameterization.  I have never seen ill effects of setting<br>
&gt; rvdw=1.4 and using dispersion correction with this force field.<br>
&gt;  &gt;<br>
&gt;  &gt; -Justin<br>
&gt;  &gt;<br>
&gt;  &gt; --<br>
&gt;  &gt; ==============================<br>
&gt; ==========<br>
&gt;  &gt;<br>
&gt;  &gt; Justin A. Lemkul<br>
&gt;  &gt; Ph.D. Candidate<br>
&gt;  &gt; ICTAS Doctoral Scholar<br>
&gt;  &gt; MILES-IGERT Trainee<br>
&gt;  &gt; Department of Biochemistry<br>
&gt;  &gt; Virginia Tech<br>
&gt;  &gt; Blacksburg, VA<br>
&gt;  &gt; jalemkul[at]<a href="http://vt.edu/" target="_blank">vt.edu</a> &lt;<a href="http://vt.edu/" target="_blank">http://vt.edu/</a>&gt; | <a href="tel:%28540%29%20231-9080" value="+15402319080">(540) 231-9080</a><br>


&gt; &lt;tel:%28540%29%20231-9080&gt;<br>
&gt;  &gt; <a href="http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin" target="_blank">http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin</a><br>
&gt;  &gt;<br>
&gt;  &gt; ==============================<div id=":2v">==========<br>
&gt;  &gt; --<br>
&gt;  &gt; gmx-users mailing list    <a href="mailto:gmx-users@gromacs.org">gmx-users@gromacs.org</a><br>
&gt; &lt;mailto:<a href="mailto:gmx-users@gromacs.org">gmx-users@gromacs.org</a>&gt;<br>
&gt;  &gt; <a href="http://lists.gromacs.org/mailman/listinfo/gmx-users" target="_blank">http://lists.gromacs.org/mailman/listinfo/gmx-users</a><br>
&gt;  &gt; Please search the archive at<br>
&gt; <a href="http://www.gromacs.org/Support/Mailing_Lists/Search" target="_blank">http://www.gromacs.org/Support/Mailing_Lists/Search</a> before posting!<br>
&gt;  &gt; Please don&#39;t post (un)subscribe requests to the list. Use the www<br>
&gt; interface or send it to <a href="mailto:gmx-users-request@gromacs.org">gmx-users-request@gromacs.org</a><br>
&gt; &lt;mailto:<a href="mailto:gmx-users-request@gromacs.org">gmx-users-request@gromacs.org</a>&gt;.<br>
&gt;  &gt; Can&#39;t post? Read <a href="http://www.gromacs.org/Support/Mailing_Lists" target="_blank">http://www.gromacs.org/Support/Mailing_Lists</a><br>
&gt;  &gt;<br>
&gt;<br>
<br>
--<br>
========================================<br>
<br>
Justin A. Lemkul<br>
Ph.D. Candidate<br>
ICTAS Doctoral Scholar<br>
MILES-IGERT Trainee<br>
Department of Biochemistry<br>
Virginia Tech<br>
Blacksburg, VA<br>
jalemkul[at]<a href="http://vt.edu/" target="_blank">vt.edu</a> | <a href="tel:%28540%29%20231-9080" value="+15402319080">(540) 231-9080</a><br>
<a href="http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin" target="_blank">http://www.bevanlab.biochem.vt.edu/Pages/Personal/justin</a></div><br>